

Zach Eichenwald, PE Lauren Klonsky, PE Gary Mercer, PE

December 20, 2018

CDM Smith

Outline

- Introductions
- Background and Review of Project and Objectives
- Study Results and Findings
 - Monitoring
 - Modeling
 - Assessment Outcomes
- Next Steps and Discussion

Introductions

- USACE
- CDM Smith
- Stakeholders
- Merrimack River communities

Background

Review of Phase III Project Objectives

- Evaluate river health and water quality from Manchester, NH to the Estuary
- Create a basin-scale model to:
 - Assess changes in river health and water quality
 - Evaluate impact of WQ management measures
 - Evaluate potential future conditions
- Provide scientific information to support decision-making on the river

Background

- Study area extends from Hooksett, NH to Newburyport, MA
- Drainage area ≈ 5000 mi²
 - 75% NH, 25% MA
- 3 hydropower dams
 - Amoskeag (NH)
 - Pawtucket, Essex (MA)
- 11 wastewater treatment plants
- 11 major named tributaries

Merrimack River Watershed Study

Study Results and Findings

Study Methodology

- Results and conclusions are the culmination of 15 years of monitoring and assessment modeling
- Characterize existing conditions
 - Identify pollution sources
 - Comprehensive monitoring of instream water quality
- Estimate water quality improvements for various management strategies with computer models
 - CSO abatement
 - WWTP Technologies
 - Nonpoint source abatement
 - Blended management plan
- Compare costs and benefits of each plan (Phases I and III only)

Water Quality Monitoring: Bacteria

Wet weather

bacteria

Water Quality Monitoring: Nutrients, Chl-a, DO

- No exceedances of state DO criteria
- Chlorophyll-a and TP occasionally exceed guidance values during low flow sampling in freshwater Merrimack River
- TN concentrations in estuary measured, but no guidance value on TN endpoints in Massachusetts Bay
 - No TN or nutrient-related impairments in estuarine Merrimack River on Massachusetts 303(d) list

Water Quality Monitoring: Next Steps

Continue Clean Streams Initiative sampling

Improve understanding of algae dynamics in Lower
 Merrimack

Others?

Assessment Modeling

- Comprehensive hydrologic, hydraulic, and water quality modeling informed by monitoring program
- Use model to understand baseline condition and predict river response to:
 - Different hydrologic conditions, including potential future conditions
 - Future point and nonpoint source loads

 Model results evaluated against MA/NH CALM guidance and surface water quality standards

Key Findings: Bacteria Scenarios (LM Only)

- Compared to prior monitoring and analysis:
 - Significant dry weather bacteria reductions reflects IDDE and other program work
 - Significant reduction in CSO activation frequency and volume
- Increased development in watershed → higher stormwater bacteria loads
- CSO reduction (to 3-month control) helps compliance with state criteria, but not only path forward

Key Findings: Nutrient Scenarios

- No predicted exceedances of state dissolved oxygen criteria
- TP and chlorophyll-a occasionally exceed NH & MA guidance values, but compliance with DO criteria suggest no current aquatic health risks
- Reducing point source TP concentrations provides the greatest reduction in chlorophyll-a concentrations, reducing the likelihood that chlorophyll-a exceeds guidance thresholds
- System is sensitive to temperature increases, and temperature increases have the potential to increase phytoplankton productivity

Key Findings: Nutrient Scenarios

- 3-month CSO control will have little impact on instream nutrient and chlorophyll-a levels
 - CSO nutrient load low relative to other point and nonpoint sources
 - CSOs occur during wet weather when residence time is short
- Pilot-scale MS4 / green infrastructure (GI) has significant implementation cost but very small reduction in TP/chlorophyll-a in mainstem Merrimack
 - Nonpoint source reduction may be important in tributaries
 - Other nonpoint source controls, such as fertilizer controls, pet waste education programs, or septic system repair may result in a more costeffective reduction in TP/chlorophyll-a

Future Considerations for Modeling

- Use the Merrimack River Model as a tool to understand how the river will respond to future point/nonpoint source inputs
- Expand and build upon Lowell's model to improve understanding of spatial/temporal variability in bacteria, nutrients, and chlorophyll-a
- Improve understanding of nutrient dynamics in Massachusetts Bay to improve the representation of the Merrimack River estuary

Cost-Benefit Analysis

 Trade-off analysis to compare water quality benefits to <u>planning-level</u> implementation costs

Planning-Level Costs	Water Quality Benefits
Additional CSO control (3-month)	Attainment of bacteria standards (existing, new Mass proposed)
MS4 / GI Controls	
TP reduction to 1 mg/L	Days below 15 or 16 μg/L chlorophyll-a guidance
TP reduction to 2 mg/L	values

Cost Basis

 All costs are <u>planning-level</u> only and do not take into consideration site-specific project needs and aggregated to a watershed level

Element	Cost Basis
Additional CSO control	Costs reported in latest LTCP or by municipality, escalated to 2018 dollars
MS4 / GI control	Range of unit costs based on EPA's Opti-Tool
WWTP TP removal	 Cost reported by municipality Highest of estimated¹ chemical or biological phosphorus removal, including sludge disposal costs and engineering/construction contingency

¹ Estimated costs based on CDM Smith experience with capital and O&M costs from other New England construction projects

Chlorophyll-a Analysis: WWTP TP Control

- WWTP TP control shows largest improvement relative to guidance levels
- TP at 1 mg/L has greatest benefit above prior investment, but at the greatest cost
- TP at 2 mg/L has a lower relative benefit, but lower cost

TP Control

Chlorophyll-a Analysis: CSO and MS4 Control

- CSO and MS4/ GI are relatively small TP load
- CSO and MS4 / GI controls yield little benefit at high cost
- Non-structural best management practices (BMPs) may result in costeffective TP control at lower cost

CSO/MS4 Control

Bacteria Analysis (Urban Areas Only)

- Full compliance with bacteria standards is not expected even with 3-month CSO control plus GI controls in MS4 areas
- CSO control more effective than GI alone
- GI implementation cost potentially high
- Modeled stormwater controls did not include non-structural BMPs that may be more cost effective
- Stormwater controls will likely improve compliance on tributaries

Scenario 14 (MS4 Controls)

···· Baseline

Scenario 15 (CSO Controls)

Scenario 16 (CSO & MS4 Controls)

Assessment Outcomes

- Study conclusions based on the culmination of 15 years of monitoring and assessment modeling
- Water quality conditions are significantly improved over conditions in the near past
- Water quality is generally good, with no measured or modeled exceedances of DO criteria, and occasional exceedances of nutrient and chlorophyll-a guidance values
- Exceedances of bacteria criteria still occur, especially during wet weather
 - Causes include both CSO and stormwater, and controlling either source alone will not achieve compliance
- Adaptive management and integrated planning are necessary to focus investments in water quality infrastructure

Next Steps

Potential Next Steps

- Continue monitoring water quality
- Use the model as a tool to understand how the river will respond to future point/nonpoint source contributions

